325,835 research outputs found

    Atmospheric Charged K/πK/\pi Ratio and Measurement of Muon Annual Modulation with a Liquid Scintillation Detector at Soudan

    Full text link
    We report a measurement of muon annual modulation in a 12-liter liquid scintillation detector with a live-time of more than 4 years at the Soudan Underground Laboratory. Muon minimum ionization in the detector is identified by its observed pulse shape and large energy deposition. The measured muon rate in the detector is 28.69±\pm2.09 muons per day with a modulation amplitude of 2.66±\pm 1.0\% and a phase at Jul 22 ±\pm 36.2 days. This annual modulation is correlated with the variation of the effective atmospheric temperature in the stratosphere. The correlation coefficient, αT\alpha_{T}, is determined to be 0.898±0.0250.898 \pm 0.025. This can be interpreted as a measurement of the atmospheric charged kaon to pion (KK/π\pi) ratio of 0.0940.061+0.044^{+0.044}_{-0.061} for Ep>E_{p} > 7 TeV, consistent with the measurement from the MINOS far detector. To further constrain the value of KK/π\pi ratio, a Geant4 simulation of the primary cosmic-ray protons with energy up to 100 TeV is implemented to study the correlation of KK/π\pi ratio and the muon annual modulation for muon energy greater than 0.5 TeV. We find out that a charged KK/π\pi ratio of 0.1598, greater than the upper bound (0.138) from this work at the production point 30 km above the Earth surface in the stratosphere cannot induce muon annual modulation at the depth of Soudan.Comment: 6 pages and 11 figure

    Stereoisomer libraries: Total synthesis of all 16 stereoisomers of the pine sawfly sex pheromone by a fluorous mixture-synthesis approach

    Get PDF
    All 16 stereoisomers of the sex pheromone of pine sawfly (3,7,11-trimethylundecanol propanoate ester) have been synthesized on a 10- to 20-mg scale by a split-parallel fluorous mixture-synthesis approach. Spectral data obtained for all 32 compounds (16 alcohols and the corresponding propionates) matched well with published data, thereby validating the fluorous-tag encoding of diastereoisomers. This fluorous-tag encoding method is recommended for the efficient synthesis of multiple stereoisomers for spectroscopic studies, biological tests, or other structure-function relationships

    Evaluation of the volumetric erosion of spherical electrical contacts using the defect removal method

    No full text
    Volumetric erosion is regarded as a significant index for studying the erosion process of electrical switching contacts. Three-dimensional (3-D) surface measurement techniques provide an approach to investigate the geometric characteristics and volumetric erosion of electrical contacts. This paper presents a concrete data-processing procedure for evaluating volumetric erosion of spherical electrical contacts from 3-D surface measurement data using the defect removal method (DRM). The DRM outlined by McBride is an algorithm for evaluating the underlying form (prior to erosion) parameters of the surfaces with localized erosion and allowing the erosion characteristics themselves to be isolated. In this paper, a number of spherical electrical contacts that had undergone various electrical operations were measured using a 3-D surface profiler, the underlying form parameters of the eroded contacts were evaluated using the DRM, and then the volumetric erosions were isolated and calculated. The analysis of the correlations between the volumetric erosion and the number of switching cycles of electrical operation that the contacts had undergone showed a more accurate and reliable volumetric erosion evaluation using the DRM than that without using the DRM

    Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    Get PDF
    In the widely-studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=\omega_2/\omega_1=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=\omega_2/\omega_1=1:4 and 2:3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multi-wave mixing theory, but support the gas-ionization model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure
    corecore